
A Fast and Accurate Machine Learning Autograder for the
Breakout Assignment

Evan Zheran Liu
Stanford University, Imbue

Stanford, CA, USA
evanliu@cs.stanford.edu

David Yuan
Stanford University
Stanford, CA, USA

davidy02@stanford.edu

Ahmed Ahmed
Stanford University
Stanford, CA, USA

ahmedah@stanford.edu

Elyse Cornwall
Stanford University
Stanford, CA, USA

cornwall@stanford.edu

Juliette Woodrow
Stanford University
Stanford, CA, USA

jwoodrow@stanford.edu

Kaylee Burns
Stanford University
Stanford, CA, USA

kayburns@stanford.edu

Allen Nie
Stanford University
Stanford, CA, USA
anie@stanford.edu

Emma Brunskill
Stanford University
Stanford, CA, USA

ebrun@cs.stanford.edu

Chris Piech
Stanford University
Stanford, CA, USA

cpiech@stanford.edu

Chelsea Finn
Stanford University
Stanford, CA, USA

cbfinn@cs.stanford.edu

ABSTRACT

We detail the successful deployment of a machine learning auto-
grader that significantly decreases the grading labor required in the
Breakout computer science assignment. This assignment — which
tasks students with programming a game consisting of a control-
lable paddle and a ball that bounces off the paddle to break bricks —
is popular for engaging students with introductory computer sci-
ence concepts, but creates a large grading burden. Due to the game’s
interactive nature, grading defies traditional unit tests and instead
typically requires 8+ minutes of manually playing each student’s
game to search for bugs. This amounts to 45+ hours of grading in a
standard course offering and prevents further widespread adoption
of the assignment. Our autograder alleviates this burden by playing
each student’s game with a reinforcement learning agent and pro-
viding videos of discovered bugs to instructors. In an A/B test with
manual grading, we find that our human-in-the-loop AI autograder
reduces grading time by 44%, while slightly improving grading
accuracy by 6%, ultimately saving roughly 30 hours over our de-
ployment in two offerings of the assignment. Our results further
suggest the practicality of grading other interactive assignments
(e.g., other games or building websites) via similar machine learning
techniques. Live demo at https://ezliu.github.io/breakoutgrader.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03
https://doi.org/10.1145/3626252.3630759

CCS CONCEPTS

• Social and professional topics→ CS1.

KEYWORDS

Machine Learning, Autograder, Grading Support, Graphics, CS1,
Feedback

ACM Reference Format:

Evan Zheran Liu, David Yuan, Ahmed Ahmed, Elyse Cornwall, Juliette
Woodrow, Kaylee Burns, AllenNie, EmmaBrunskill, Chris Piech, andChelsea
Finn. 2024. A Fast and Accurate Machine Learning Autograder for the Break-
out Assignment. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2024), March 20–23, 2024, Port-
land, OR, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3626252.3630759

1 INTRODUCTION

Computer science instructors often task students with developing
interactive applications such as games and websites. These assign-
ments are particularly engaging and motivating for students [25]
and are appearing more and more in computer science curricu-
lum [5], but are particularly time-consuming for instructors to
grade. One university CS1 course assignment is to develop the
game of Breakout (see Figure 2), which on average takes graders
over 8 minutes per student submission to manually play the pro-
grammed game and find bugs. As demand for computer science
education increases, this grading cost becomes particularly burden-
some: the Breakout assignment creates 45+ hours of grading work
for a single assignment in a standard university course offering.
Automated tools for helping instructors grade faster have the po-
tential to reduce this burden and lead to more widespread adoption
of this engaging kind of assignment.

https://ezliu.github.io/breakoutgrader
https://doi.org/10.1145/3626252.3630759
https://doi.org/10.1145/3626252.3630759
https://doi.org/10.1145/3626252.3630759


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Evan Zheran Liu, et al. ’23

Ack: Little flying Robot mascot character 
set. Support service-center. Chat bot. 
Search with magnifying. For all tasks. 
Cartoon vector illustration.
By ilyakalinin

Astronaut or spaceman 
big set character. Man in 
spacesuit bundle. 
Collection illustrations. 
Different situations. 
Colonization of mars.
By ilyakalinin

Figure 1: Grading Breakout traditionally requires manually playing each student program to find the errors, which is extremely time consuming.

Instead, our autograder to automatically plays and find errors in each program, saving a lot of time. The autograder further automatically

assigns grades based on what it found, and submits the predicted grades, as well as videos of what it observed to a human for verification.

Many existing automated tools for grading programming assign-
ments are designed for analyzing student code directly [2, 15, 28–
31], e.g. by comparing student code with solution code or other
graded programs. Such tools are best suited for short student code
snippets, and thus would be challenging to extend to the substan-
tially longer and more open-ended code that underlies interactive
games and websites. Alternatively, approaches that find mistakes by
interacting with the student-programmed application have shown
promising results in offline research studies [13, 21], but have not
yet shown success in live use-cases.

In this work, we choose to build on one of such methods, specifi-
cally DreamGrader [13], which uses example graded assignments
to train a neural network agent that interacts with and finds mis-
takes in games, and which focused on the Bounce assignment from
Code.org [4]. Bringing DreamGrader from a research project into
a live deployment in a university course is non-trivial for multiple
reasons. First, university courses typically assign more complex
games than Bounce; we will focus on the Breakout assignment in
Python. Second, unlike the Code.org assignment, the Python-based
Breakout assignment does not have any existing data of graded
assignments. Because of the lack of data, we programmatically gen-
erate student programs with different combinations of mistakes,
leading to a representative dataset of 16386 synthetic programs.
Finally, assigning grades to real students has high stakes, and only
a human-in-the-loop tool can guarantee high-quality grades. There-
fore, we develop a grading interface that, for each rubric item, allows
course assistants to leverage both the predicted grade and a video
of item-relevant program behavior generated by DreamGrader.

The main contribution of this paper is the development and de-
ployment of an artificial intelligence (AI) based grading tool for the
Breakout assignment. Our autograding interface uses a machine
learning model to help instructors in two different ways. For each
rubric item, it first displays a video of the machine learning model
playing the game and exposing whether or not an error was made.
Second, it pre-fills the rubric with the machine learning model’s
predictions, while allowing instructors to modify the rubric grades.
We deployed the tool in an university introductory computer sci-
ence course in Spring 2023, and at the request of the instructor, in
the Summer 2023 course offering as well. Beyond the deployment,

the results of our randomized A/B test indicate that the tool reduces
grading time by 44%while improving grading accuracy by 6%. These
results suggests that the tool saved roughly 30 hours of course as-
sistant time over the two deployments. We plan to open-source our
complete autograding tool and hope that it, and similar autograders
developed for other interactive assignments, will make it practical
for more courses to offer engaging, interactive assignments.

2 RELATEDWORK

Game-based assignments. Highly interactive programs are a com-
mon element of many computer science curricula. There is a lot
of research into the benefit of building games in CS education
[1, 10, 12, 20]. Well-designed games have also been shown to be an
effective pedagogy for both men and women in the research on girls,
computer science, and games [3]. Breakout, in particular is a classic
assignment in CS education. First presented as a “nifty" assignment
in SIGCSE 20061[24], it has become a common assignment both in
courses [22, 26, 27] and research [33].

AI-based autograding and grading assistance. Autograding has
been a core focal point of CS education for reducing human grading
burden [7, 23]: with many newer systems incorporating AI-based
technology such as deep learning [16, 32]. There has also been
interest in using AI to help human instructors efficiently provide
richer forms of feedback to students in introductory programming
courses (e.g. [6, 9]).

Recently, AI for grading interactive work has been an active area
of research in the reinforcement learning literature. The problem of
playing student work was first posed in 2021 [21] and was expanded
on in 2022 [13]. Both of these works were developed on simple as-
signments from Code.org, and presented exciting proof-of-concept
results. This paper extends those results to a CS1 level assignment
and deploys the grading system with real graders in a live course.

Grading user experience. There is a long history of research into
into how to present feedback to students and graders in SIGCSE
and beyond [8, 11, 17], including work to improve the grading

1http://nifty.stanford.edu/2006/roberts-breakout/

http://nifty.stanford.edu/2006/roberts-breakout/


A Fast and Accurate Machine Learning Autograder for the Breakout Assignment SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Figure 2: The Breakout game. Several colored bricks have already

been broken by bouncing the ball off of the paddle to hit the bricks.

experience [18, 19, 19, 34], which inspire our design choices to
make an experience that is usable, accessible and fair.

3 THE BREAKOUT ASSIGNMENT

We now detail the Breakout assignment for which we have built
a new autograder. In this assignment, students are tasked with
programming the classic Breakout arcade game in Python, displayed
in Figure 2. A correct implementation should include a mouse-
controllable paddle that can move left or right, a ball, and several
rows of bricks. The ball should bounce off the paddle and walls,
and break bricks upon collision. Breakout has gained popularity
as a fun and engaging way to learn introductory computer science
concepts, such as decomposition, control flow operations, and basic
graphics. Consequently, it has been offered at multiple universities,
as well as high school classrooms, though the associated immense
grading burden has prevented its further widespread adoption.

Grading challenges. Breakout is typically graded according to an
instructor-written rubric, which lists a set of errors detailed below.
Graders deduct points for each error present in a student’s program.
The main bottleneck of grading is that there have been historically
no effective ways for automatically testing for these errors.

Breakout defies traditional input-output unit tests, due to its
interactive and stochastic nature (e.g., the initial velocity of the
ball is randomized). There have been attempts to automatically
test program behavior via hardcoded algorithms of controlling the
paddle, but the resulting autograders are extremely brittle, breaking
if the student even slightly misplaces the paddle. Furthermore,
student implementations range between 200 and 400 lines of code,
which is equivalent to roughly 3-6 pages of text. This makes grading
by simply reading the code infeasible.

Consequently, the prevailing method for grading is to manually
interact with each student submission and exhaustively check if
each error in the rubric is present. Unfortunately, this can be ex-
tremely time consuming and error prone, as certain game states
can be difficult to reach. For example, one common error is “paddle
skewering,” where the ball can become skewered if it is struck by
the paddle on the side. As the ball is small and falls quickly, manual
testing can take many attempts. Another example is checking if
the program correctly terminates if all bricks are broken, as this

requires either manually breaking all of the bricks, or modifying
the student’s code to create fewer total bricks.

Grading rubric. To understand the types of errors that graders
check for, Table 1 outlines the rubric of errors that graders uses.

4 THE DREAMGRADER AUTOGRADER

In this section, we detail the machine learning techniques behind
our autograder and how instructors interact with it to grade more
quickly. Our autograder builds on the insight that the time-consuming
aspect of grading is manually entering game states that indicate the
presence or absence of errors in the student program. In contrast,
determining whether the correctness of the game’s behavior at such
states is relatively simple and fast.

Hence, the autograder is designed to automatically and robustly
reach the game states that a human would normally have to reach
manually. Then, it assigns grades to the rubric items based on the
observed behavior at these states. Additionally, to mitigate concerns
about fully-automatic grading, the autograder also presents short
videos of the observed behaviors to human graders, who can then
quickly verify the correctness of the autograder’s grades. This vastly
accelerates the grading process by automating the slow component
of playing the game (see Figure 1 for an illustration).

In the next three sections, we first provide an overview of the
machine learning techniques that enable the autograder to robustly
reach the necessary game states, even in student programs with
unexpected or incorrect behavior (Section 4.1). Second, we describe
how we apply these techniques to specifically train a Breakout
autograder (Section 4.2). Finally, we detail the interface through
which human graders interact with the autograder (Section 4.3).

4.1 Background on DreamGrader

Webuild our autograder on top of theDreamGrader framework [13]
for training reinforcement learning (RL) agents to discover bugs in
interactive programs. DreamGrader assumes that an instructor
has already defined a rubric and uses that rubric and a dataset of
programs with filled-in rubrics to train an autograder. The dataset
should be representative of the kinds of buggy programs that stu-
dents will write. The resulting DreamGrader autograder is a collec-
tion of agents that seek out bugs corresponding to the rubric items
by interacting with the program. DreamGrader further assigns
grades to each rubric item based on its observed interaction.

DreamGrader trains two key components for each rubric item,
each represented with a deep neural network: First, a game-playing
policy takes the game state as input and outputs actions; this policy
is trained automatically via RL to interact with a student’s program
and visit states indicative of whether the rubric item is correct or
not. The policy produces a trajectory of game states and actions.
Second, a rubric classifier takes the trajectory generated by the
policy as input and predicts the rubric item label. This classifier is
trained via supervised learning using the labeled programs.

In RL, the policy learns, through trying things out, to select
actions that are expected to yield a large amount of cumulative
reward over a trajectory. One intuition behind the benefit of RL
is that it can be easier to specify a reward function and then auto-
matically (machine) learn a policy to optimize that function (in this
case, grade the assignment well), rather than manually write down



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Evan Zheran Liu, et al. ’23

Table 1: Outline of the rubric items that graders check to grade Breakout.

Category Assignment Specification Example Error(s)

Game Display The game must display 10 rows of 10 bricks, a ball, and a paddle. The color, size,
and location of each of these objects must match the assignment handout.

The number of bricks is incorrect.
Changes to constants are not correctly handled.

Paddle Movement The paddle must track the left and right mouse movements of the player. The paddle is not centered on the mouse.
The paddle follows the mouse off screen.

Ball Movement The ball must correctly bounce off bricks, walls, and the paddle. The ball becomes “skewered” on the paddle, when struck
from the side.

Brick Collision Bricks should break when hit by the ball. The ball does not bounce when breaking a brick.
Bricks break before collision with the ball.

Game Termination The game should terminate when all lives are lost, or all bricks are broken. A
life is lost when the ball falls to the bottom of the screen.

The game continues even when all bricks are broken.
The player has too many or too few lives.

a decision policy that can effective grade a student’s program by
playing it and finding bugs. Hence, our work uses RL, rather than
asking expert graders to manually program a grading strategy or to
demonstrate how they grade sample programs, which is expensive
and time-consuming to gain the detail and coverage necessary to
generalize to the full range of student submissions.

The key challenge of our setting then lies in defining a reward
function that incentivizes the grading policy to visit states infor-
mative of the rubric label. This could be implemented as an end-
of-episode reward corresponding to the rubric classifier’s accuracy;
however, this creates a sparse reward signal, which can hinder opti-
mization. Based on Dream [14], DreamGrader instead formulates
a reward function that estimates information gain at each timestep
in the trajectory, which corresponds to the improvement in the
rubric classifier’s accuracy after observing the current timestep.
Once each policy and rubric classifier are trained using the labeled
programs, they can be used to fill in rubrics for new programs. Dur-
ing deployment for a given rubric item, DreamGrader runs the
learned policy to generate a trajectory in the game and then passes
that trajectory to the classifier to predict the rubric item label.

4.2 Adapting DreamGrader to Breakout

From a high level, training a DreamGrader autograder on Break-
out requires three main components: First, we must define how
the autograder interfaces with the Breakout game, namely, what
the autograder receives as input and what actions in the game it
outputs. Second, we need a set of graded programs labeled with the
errors contained within to train the autograder. Finally, as student
programs typically take mouse movements as input, we need a
way to practically hook up the autograder with student code. We
describe how we tackle these three components below.

Modeling Breakout as a Markov decision process. The RL tech-
niques that DreamGrader builds upon relies on formalizing the
domain as a Markov decision process, which roughly defines the
inputs and outputs of the autograder, and what happens as a re-
sult of the autograder’s outputs. Formally, we let the state (i.e., the
autograder’s inputs) at each timestep be:

• The bounding boxes of the paddle and ball: i.e., the (x, y)-
coordinates of the top left corner, the width and the height.

• The x and y-velocities of the ball, as well as binary indicators
for whether they have flipped signs at this timestep (e.g.,
from bouncing off something).

• The remaining number of bricks.
We let the possible actions at each timestep be to move the paddle
left or right by 10 pixels. Finally, each Breakout program defines the
dynamics or what happens on the next timestep as a consequence
of each action (e.g., how the ball bounces off the paddle and bricks).

Obtaining training data. Ideally, a set of training programs should
maximally cover the possible behaviors the autograder may see
when grading real student programs. Since manually curating such
a set is time-consuming and error prone, we instead automatically
generate programs by taking a reference correct program and in-
jecting errors into it. Specifically, we take 16 of the most common
implementation errors and create the set of 216 = 65356 programs
of all possible combinations of these errors. The presence of some
errors can overshadow the behaviors of other errors, so there are
only 214 + 2 = 16386 uniquely-behaving programs. Generating
programs this way is convenient, because we then know which
errors are present in each program, which is required for training.

We train DreamGrader on these programs, with a separate
game-playing policy and rubric classifier for each rubric item. Then,
we can grade a new student program by running each policy and
classifier pair. Critically, each pair needs to train on the full set of
training data in order to be able to robustly handle student programs.
For example, a paddle skewering policy needs to be able to test
skewering the ball even in student programs with other errors, such
as an incorrectly-sized paddle or incorrect bouncing mechanics.

However, we find that directly training each pair on all 16386
programs via RL often fails because the specific error that each
pair is trained detect can be difficult to identify from such a diverse
set of program behaviors. We mitigate this by first training each
pair only on 2 programs: (1) a reference correct program; and (2) a
program that contains only the error that the pair is designed to
detect and no other errors. This serves as a good initialization that
then enables training on all 16386 programs. Each rubric item takes
between 3 to 74 hours of training on a single GTX3080.

Injecting the autograder into student code. Applying the auto-
grader to real student code requires two components: A way for
the autograder to (1) read the state from the program; and (2) feed
its actions into the program.

The Breakout assignment tasks students with programming
Breakout on top of a tkinter Canvas object, which enables the stu-
dent to draw the bricks, paddle, and ball with the create_rectangle
and create_oval functions. To extract the game’s state from the



A Fast and Accurate Machine Learning Autograder for the Breakout Assignment SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

program, we create our own Canvas object that holds the auto-
grader, and change the student’s code dependencies to use ours
instead at run time. Our Canvas object then keeps track of all of
the relevant objects added and feeds this information as the state to
our autograder. We also use this Canvas to render the videos that
the autograder displays to human graders.

To track the mouse’s position with the paddle, students use the
get_mouse_x() and get_mouse_y() functions from the tkinter
Canvas object, which returns the mouse’s (x, y)-coordinates. We
inject the autograder’s actions into student’s code by monkey patch-
ing these functions so that each get_mouse_x() or get_mouse_y()
function call instead queries the autograder to determine what pad-
dle movement to make. Then, instead of relying on the student
code to move the paddle appropriately, we directly move the paddle
ourselves with our Canvas object, so that the autograder continues
to work, even if the student paddle movement implementation is
broken. Accordingly, we also override any other paddle movements
that the student code makes in our Canvas.

A final wrinkle in interfacing the autograder with student code
lies in dependent constants. Some rubric items require testing the
student’s code after changing certain constants in the code, such as
NUM_BRICK_ROWS or BALL_RADIUS. We handle these by loading the
student’s code and then changing these values at run time. However,
students occasionally define their own dependent constants, such
as HALF_NUM_BRICK_ROWS = NUM_BRICK_ROWS // 2, which would
fail to be updated in our changes to the constants. We update these
values by extracting dependencies from the abstract syntax tree
and propagating all constant changes.

Special case errors. The autograder handles two categories of
errors separately: First, game display errors do not require any
interaction with the game, and only need to test whether the paddle,
ball, and bricks are drawn correctly. To handle these, we register
all the objects created via our Canvas object and check that their
rendering matches a reference solution. Second, programmatically
generating mouse movements via Python to test that the paddle
correctly tracks the mouse is highly non-trivial. However, manually
testing this is extremely fast and simple: graders only need to move
the mouse around and check that the paddle is centered on the
mouse, so we leave this to always be manually graded.

4.3 Interface for Graders

Figure 3 displays the interface through which graders use the au-
tograder. Graders are presented with all of the rubric items on
the left, which are grouped into folds and pre-populated with the
predicted grades from the autograder. Graders can either confirm
the pre-populated grades or overrule them by watching the videos
justifying the autograder’s grades on the right. Opening a new fold
automatically loads the video associated with the corresponding
rubric items. Additionally, graders can click on the “Code” tab to
directly read or modify the student’s code, as well as the “Demo”
tab, to manually interact with the game defined by the student
program. As videos are quite short (less than 10s), ideally grading a
single student should only take a few minutes to watch each video
and confirm all of the grades.

Figure 3: The user interface for our grading tool.

5 COMPARISONWITH MANUAL GRADING

To understand the practical deployability of our autograder, we
compared our autograder with manual grading, aiming to answer
three main questions:

(1) How does the autograder impact grading time?
(2) How does the autograder impact grading accuracy: i.e., the

fraction of rubric items correctly graded?
(3) How do graders feel about using the autograder?

Experimental setup. To answer these questions, we obtained 15
volunteer graders from a pool of university computer science teach-
ing assistants. We compared their grading with and without the
autograder on 60 real student submissions to the Breakout assign-
ment. To ensure a fair comparison between the autograder and
manual grading, we controlled for three effects:

• Submission grading difficulty. Due to differences in the num-
ber of errors and implementation, some student submissions
are more difficult to grade than others. To control for this
effect, we had each submission graded twice by separate
graders, once manually, and once with the autograder,

• Grading ability. Graders vary in their grading ability. To
control for this effect, we tasked each grader with grading
both manually and with the autograder, in random order.

• Breakout grading experience. Graders improve as they gain
more experience with an assignment. To control for this
effect, we randomized whether each grader graded with the
autograder or manually first.

Altogether, each of the 60 submissions was graded oncemanually
and once with the autograder. Each grader graded 4 submissions
manually and then 4 with the autograder, or in the reverse order,
with the order of manual vs. assisted determined at random. Graders
were not permitted to revisit previously-graded submissions to
prevent them from using insights gained from the autograder for
previously manually-graded assignments or vice versa.

We recorded the amount of time each grader spent on each sub-
mission. To measure accuracy, we obtained ground-truth grades
from an expert grader who had previously graded over 100 sub-
missions, and double-checked cases where the expert disagreed



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Evan Zheran Liu, et al. ’23

Table 2: Survey questions presented to graders and their average

responses. Graders were asked to rate the first five statements on a

Likert Scale, and then provide a Net Promoter Score for how much

they would recommend using the autograder.

Likert Scale (Strongly Disagree = 1, Disagree = 2, Neutral = 3, Agree = 4, Strongly Agree = 5)
Statement Avg. Score

Using the autograder is easier than manually grading. 4.5
Using the autograder is faster than manually grading. 4.5
Using the autograder is more accurate than manually grading. 3.9
The autograder’s grades were useful to me. 4.4
I enjoyed using the autograder. 4.6

Net Promoter Score (0 - 10 inclusive)
How much would you recommend using the autograder over
manually grading in the future?

9.0

Table 3: Grading time and accuracy results of manual grading,

human-in-the-loop autograding, and human-free autograding.

Grading Scheme Human Grading Time Grading Accuracy

Manual 8 min 35s ± 6 min 47s 86.4% ± 8.9%
Autograder with human 4 min 49s ± 2 min 5s 92.3% ± 7.6%

Autograder only — 90.1% ± 11.0%

with the other graders. Additionally, to answer question (3), we also
asked each grader to fill out a short survey displayed in Table 2.

Grading time and accuracy results. As shown in Table 3, we
found that the autograder overall significantly decreased grading
time by 44% on average, while also increasing grading accuracy by
6%. Grading accuracy with the autograder matched or improved
upon manual grading in every single rubric item, with the largest
accuracy improvements arising in rubric items requiring long or
complex manipulations, such as terminating the game by winning
or losing, ensuring that the game reacts appropriately to modified
constant values, and paddle skewering.

While we mainly use the autograder with a human in the loop,
the autograder itself directly predicts grades for each rubric item.
We also measured the accuracy of these grades without any human
intervention under “Autograder only” in Table 1. Promisingly, these
grades already surpass manual grading accuracy, with no human
time required. Further, we found that these grades actually match
or even improve on human-in-the-loop autograding in most rubric
items, except for brick collisions errors: The autograder failed to
catch errors where multiple bricks were removed at the same time,
likely because its training data included no such programs. Notably,
we found that graders not infrequently overruled autograder grades
to give out incorrect grades. These results emphasize the importance
of obtaining sufficient coverage in the training data, and suggest
the possibility of surpassing even autograder-assisted humans with
only the autograder via improved training data.

Survey results. Table 2 reports the average responses of graders
to each survey question. Graders overwhelmingly found the auto-
grader to be easier and faster to use than manually grading, as well
as useful and enjoyable, with an average response between Agree
and Strongly Agree. They also found the autograder to be more ac-
curate than manual grading, with an average response near Agree.
Finally, graders unanimously recommended using the autograder
over manual grading, with an average score of 9 out of 10.

6 LIVE DEPLOYMENT

We first deployed our autograder for the Breakout assignment in the
Spring 2023 semester of a university CS1 course of 323 students. The
teaching staff enjoyed using the autograder so much that another
instructor asked us to deploy the autograder again for the Summer
2023 semester offering of the same course, with 199 students.

We could not obtain accurate measurements of grading accuracy
or time, as each assignment was only graded once, and graders
paused grading at their own leisure. However, based on the results
from our comparison with manual grading in the previous section,
our two deployments of the autograder saved roughly 32 hours.

Graders in the live deployment optionally left feedback via the
same survey in Table 2, along with a space for free-form feedback.
Similarly to the comparison with manual grading, graders generally
recommended using the autograder with an average score of 8.6
out of 10. Interestingly, the free-form feedback primarily focused
on improving the UI of the autograder, which can significantly
improve grader experiences and is relatively simple to address.

7 CONCLUSION

We presented an AI-based grading tool for the Breakout assign-
ment, and detailed its successful deployment in two offerings of a
university computer science course. Our results indicated that the
tool saved grading time by 44% while improving grading accuracy
by 6% compared to manual grading. In the live deployment, graders
left positive feedback, almost unanimously recommending it for
future use. We fully open source our autograder and host a live
demo at https://ezliu.github.io/breakoutgrader. We hope that such
an autograder will lower the barrier for instructors to incorporate
the Breakout assignment into their course in the future, especially
at schools with limited manual grading capacity.

There are numerous interesting directions for future work. First,
it would be interesting to explore whether students can more di-
rectly benefit from such an autograding tool, since it may provide
immediate feedback that is infeasible for instructors to provide.
Second, our work shows the practicality of using DreamGrader
techniques for grading interactive assignments. Similar tools could
in principle be built for other interactive assignments, including
web design assignments, and possibly using a single generalist au-
tograding agent, which would open the door for a more expansive
array of possible interactive assignments. Finally, as our analysis
indicates that the autograder alone already surpasses human-in-
the-loop autograder for many rubric items, future research should
investigate new human-AI interfaces that can better combine auto-
mated predictions with human expertise.

ACKNOWLEDGMENTS

We thank the volunteer graders and CS106A teaching assistants,
listed at https://ezliu.github.io/breakoutgrader. EL is supported by a
NSF Graduate Research Fellowship under Grant No. DGE-1656518.
CF is a CIFAR Learning Machines and Brains Fellow. This work
was supported by Intel and a Stanford Hoffman Yee grant. Icons in
this work were made by Freepik and imaginationlol from Flaticon,
and ilyakalinin from Adobe Stock Photo.

https://ezliu.github.io/breakoutgrader
https://ezliu.github.io/breakoutgrader


A Fast and Accurate Machine Learning Autograder for the Breakout Assignment SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

REFERENCES

[1] Paulo Battistella and C Gresse von Wangenheim. 2016. Games for teaching com-
puting in higher education–a systematic review. IEEE Technology and Engineering
Education 9, 1 (2016), 8–30.

[2] Sahil Bhatia and Rishabh Singh. 2016. Automated correction for syntax errors
in programming assignments using recurrent neural networks. arXiv preprint
arXiv:1603.06129 (2016).

[3] Gail Carmichael. 2008. Girls, computer science, and games. ACM SIGCSE Bulletin
40, 4 (2008), 107–110.

[4] Code.org. 2022. Code.org. https://code.org/about.
[5] Jeffrey E Froyd, Phillip C Wankat, and Karl A Smith. 2012. Five major shifts in

100 years of engineering education. Proc. IEEE 100, 0 (2012), 1344–1360.
[6] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.

2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. In Conference on Human Factors in Computing Systems (CHI).
1–35.

[7] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos, Jay
Shah, Danielle Yucht, and Thu D Nguyen. 2018. Providing meaningful feedback
for autograding of programming assignments. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. 278–283.

[8] Qiang Hao, David H Smith IV, Lu Ding, Amy Ko, Camille Ottaway, Jack Wilson,
Kai H Arakawa, Alistair Turcan, Timothy Poehlman, and Tyler Greer. 2022.
Towards understanding the effective design of automated formative feedback for
programming assignments. Computer Science Education 32, 1 (2022), 105–127.

[9] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing reusable code feedback at
scale with mixed-initiative program synthesis. In Proceedings of the Fourth (2017)
ACM Conference on Learning@ Scale. 89–98.

[10] Stan Kurkovsky. 2009. Engaging students through mobile game development.
ACM SIGCSE Bulletin 41, 1 (2009), 44–48.

[11] Abe Leite and Saúl A Blanco. 2020. Effects of human vs. automatic feedback on
students’ understanding of AI concepts and programming style. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. 44–50.

[12] Scott Leutenegger and Jeffrey Edgington. 2007. A games first approach to teaching
introductory programming. In Proceedings of the 38th SIGCSE technical symposium
on Computer science education. 115–118.

[13] Evan Liu, Moritz Stephan, Allen Nie, Chris Piech, Emma Brunskill, and Chelsea
Finn. 2022. Giving Feedback on Interactive Student Programs with Meta-
Exploration. Advances in Neural Information Processing Systems 35 (2022), 36282–
36294.

[14] Evan Zheran Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. 2021. De-
coupling Exploration and Exploitation for Meta-Reinforcement Learning without
Sacrifices. In International Conference on Machine Learning (ICML).

[15] Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, Madison Coots, John
Mitchell, Noah Goodman, and Chris Piech. 2021. Generative Grading: Near
Human-Level Accuracy for Automated Feedback on Richly Structured Problems.
International Educational Data Mining Society (2021).

[16] Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, John Mitchell, Noah Good-
man, and Chris Piech. 2019. Generative grading: Neural approximate parsing for
automated student feedback. arXiv preprint arXiv:1905.09916 (2019).

[17] Jessica McBroom, Irena Koprinska, and Kalina Yacef. 2021. A survey of automated
programming hint generation: The hints framework. ACM Computing Surveys

(CSUR) 54, 8 (2021), 1–27.
[18] Alexandra Ann Milliken. 2021. Redesigning How Teachers Learn, Teach, and Assess

Computing with Block-Based Languages in Their Classroom. North Carolina State
University.

[19] Divyansh Shankar Mishra. 2023. The Programming Exercise Markup Language: A
Teacher-Oriented Format for Describing Auto-graded Assignments. Ph. D. Disserta-
tion. Virginia Tech.

[20] Briana B Morrison and Jon A Preston. 2009. Engagement: Gaming throughout
the curriculum. ACM SIGCSE Bulletin 41, 1 (2009), 342–346.

[21] Allen Nie, Emma Brunskill, and Chris Piech. 2021. Play to Grade: Testing Coding
Games as ClassifyingMarkov Decision Process. InAdvances in Neural Information
Processing Systems (NeurIPS).

[22] Isabela Ortiz Jaramillo et al. 2023. A summer introductory programming course
with diversity awareness. (2023).

[23] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated assess-
ment in computer science education: A state-of-the-art review. ACM Transactions
on Computing Education (TOCE) 22, 3 (2022), 1–40.

[24] Nick Parlante, Steven A Wolfman, Lester I McCann, Eric Roberts, Chris Nevison,
John Motil, Jerry Cain, and Stuart Reges. 2006. Nifty assignments. In Proceedings
of the 37th SIGCSE technical symposium on Computer science education. 562–563.

[25] Jay A Pfaffman. 2003 2003. Manipulating and measuring student engagement in
computer-based instruction. Ph. D. Dissertation. Vanderbilt University.

[26] Christopher Piech, Ali Malik, Kylie Jue, and Mehran Sahami. 2021. Code in place:
Online section leading for scalable human-centered learning. In Proceedings of
the 52nd acm technical symposium on computer science education. 973–979.

[27] Chris Piech, Lisa Yan, Lisa Einstein, Ana Saavedra, Baris Bozkurt, Eliska Sestakova,
Ondrej Guth, and Nick McKeown. 2020. Co-teaching computer science across
borders: Human-centric learning at scale. In Proceedings of the Seventh ACM
Conference on Learning@ Scale. 103–113.

[28] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27 (2017), 37–64.

[29] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceed-
ings of the 34th ACM SIGPLAN conference on Programming language design and
implementation. 15–26.

[30] Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh. 2017. Data-
driven feedback generator for online programing courses. In Proceedings of the
Fourth (2017) ACM Conference on Learning@ Scale. 257–260.

[31] Mike Wu, Noah Goodman, Chris Piech, and Chelsea Finn. 2021. Prototrans-
former: A meta-learning approach to providing student feedback. arXiv preprint
arXiv:2107.14035 (2021).

[32] Lisa Yan, Nick McKeown, and Chris Piech. 2019. The pyramidsnapshot challenge:
Understanding student process from visual output of programs. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 119–125.

[33] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS: Using
intermediate assignment work to understand excessive collaboration in large
classes. In Proceedings of the 49th ACM technical symposium on computer science
education. 110–115.

[34] Jeremy K Zhang, Chao Hsu Lin, Melissa Hovik, and Lauren J Bricker. 2020.
GitGrade: A Scalable Platform Improving Grading Experiences.. In SIGCSE. 1284.

Received 18 August 2023; accepted 2 October 2023

https://code.org/about

	Abstract
	1 Introduction
	2 Related Work
	3 The Breakout Assignment
	4 The DreamGrader Autograder
	4.1 Background on DreamGrader
	4.2 Adapting DreamGrader to Breakout
	4.3 Interface for Graders

	5 Comparison with Manual Grading
	6 Live Deployment
	7 Conclusion
	Acknowledgments
	References

